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A description is given of a view factor technique for solving time-dependent. non-linear
radiative transfer problems. It is believed unique among view factor methods in having the
ability to solve problems involving gases or plasmas with emissive and absorptive charac-
teristics which vary in space and time. The radiative characteristics of the enclosing surfaces
can aiso have an arbitrary space and time dependence, and these characteristics can be
updated based on an appropriate physical model of the interaction of the background radia-
tion field with the medium. Various sample problems are sclved, inciuding a time-dependent
so.ution for concentric spheres filled with a participating medium of arbitrary opacity for a
step function source. € 1990 Academic Press. Inc

1. INTRODUCTION

View factor techniques, which have typically been applied to steady-siate
radiative heat transfer problems in the past. have recently been used successfully
[1,2,3]. to solve time-dependent radiative transfer problems. Such methods. in
general, involve the subdivision of given surfaces into small surface elements, either
manually or with the aid of a computer algorithm, the specification of the radizalive
characteristics of the surface elements so generated, and the modeling of the
radiative transfer between the surfaces with the aid of view factors. They can be
applied where complex radiation source dependence on time and space make
application of competing methods, such as Monte Carlo, extremely costly in ierms
of computer time and memory. Alternatively, they can be used to provide quick
iterative solutions to steady-state or near steady-state problems in situations
involving complicated geometries and source funciions.

Unfortunately, to date the use of view factor techniques and computer codes has
been limited mainly to situations in which there is no participating medium, such
as a gas or plasma. For vacuum problems, the fraction of radiation emitted by one
diffusely emitting surface which eventually strikes another surface is merely a func-
tion of the source strength at the emitting surface and the areas and orientations
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of the two surfaces. If some intervening medium is included, however, it is necessary
to know not only the emissive and absorptive characteristics of the medium and
how it varies over some large number of time steps, but how these characteristics
are affected by the radiation field. Furthermore, some technique must be developed
for determining the contribution of the medium to beams of radiation as they pass
from one surface to another. If the realistic assumption is made that the medium
is non-homogeneous, and its characteristics can vary more or less drastically
throughout the problem space, the complexity of the problem is evident.

Here we describe a view factor method which includes the effects of participating
media in time-dependent radiation transport calculations, and the results obtained
in applying the method to various sample problems with the aid of the RAYNA II
view factor code.

2. VIEW FACTOR FUNDAMENTALS

Given two differential surfaces dA, and dA4, separated by a distance r, the rate
at which radiation leaving dA4, strikes dA4, is [4]

dg,_.,=1I,cos,dA, dw,_,, (1)

where [, is the intensity of radiation from dA4,, 8, is the angle formed by the normal
to d4, and the line joining the two surfaces, dA, cos 6, is the projection of area
element d4, as seen from dA,, and dw, _, is the solid angle subtended by d4, as
secen from d4,. Since emissive power E is related to intensity / by

E=nl (2)

and since
d4,
dw;_,=cos 8, rzge (3)

where 6, is defined similarly to 6, and r is the distance between the two surfaces,
one has

(4)

0 6, dA
dql‘2:E1 dAl (‘ml—:)rsz-£>

The term in parenthesis in Eq. (4) is the fraction of radiation from surface d4, that
strikes surface d4,. Then, for two macroscopic geometrical surfaces A, and 4,, one
can write

A, F,

5 dA, dA4,, (3)

s nr

-2

Jﬂ j cos 0, cos 0,
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where F,_, is called the view factor evaluated on the basis of area A,.
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VIEW FACTOR METHOD

Typically, users of view factor computer codes approximate the differential
surface elements described above by subdividing the surfaces which make up a
problem into some chosen number of elements of approximately equal area, cither
manually or automatically with the aid of a computer algorithm. The actual
number of elements emplioyed can normally be specified by the user, limited by
machine speed and memory constraints. The set of geometric surfaces presently
available to RAYNA I users includes disks, cylinders, cones, spheres, and varicus
derivatives thereof. The algorithm for subdividing these surfaces into smatler
elements is similar in all cases. First, the surface is divided into rings, which are
further subdivided into elements, as shown below for the case of a disk (Fig. i}.

Obviously, the rings into which the disk has been subdivided by the code, as
shown in Fig. 1b, all have a common axis of symmetry. In fact, the code will
generate such axisymmetric rings in the process of breaking down all of the other
surfaces in its repertoire, a circumstance which will prove useful in exploiting 2D
symmetry when it exists.

At this point surface-to-surface view factors between the elements must ke
calculated. Readers interested in the details of such calculations may consult
Refs. [4 or 5], which contain a review of view facter technigues. A check must be
made to determine if the optical path between any pair of elements is obstructed by
an intervening surface. in which case the view factor between the elements is reset
to zero.

The time dependence of the problem is modeled by causing the calculation io
proceed in discrete time steps. Once element to element view factors have besn
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Fic. { RAYNA II Algorithm for region subdivision as applied to a disk.
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computed, solution of the radiative transfer problem consists of determining the
contribution of each of the elements to every othe element in the problem during
each time step. If it takes light » time steps to travel from element j to element £,
the radiation contributed by j to & in a time step will be

E,.=S,[(N—n)4t] A, F 41, (6)

where £, is the radiative energy contribution of element j to element k in the time
step in ergs, N is the number of time steps since the beginning of the problem,
S;[(N —n) At] is the radiative source strength of element j during time step (N —n)
in ergs/cm®s, A ; is the area of j, F, is the view factor from j to k, and 4t is the
time step size. Radiative source strength, S;, is recomputed every time step based
on the total amount of incoming radiation and user-declared boundary conditions,
including surface albedo or reflectivity and legislated or computed surface source
strengths. Evidently, one can solve the vacuum problem by retaining in memory the
radiative source strengths for some number of time steps equal to the time it takes
for light to travel between the two most distant elements in the problem, the
element areas and the view factors between each pair of elements which are visible
to each other. In essence, one keeps track of the “bundles” of radiation mentioned
carlier as they pass along rays from element to element. This strategy has been used
successfully to provide time-dependent solutions for vacuum problems [1, 27].

3. THE TRANSPORT PROBLEM WITH PARTICIPATING MEDIA

If participating media are included, the simple treatment of radiation transport
described above is no longer adequate. One must not only determine what fraction
of radiation from one surface element is emitted in the direction of another surface
element, but what happens to the radiation as it passes through the intervening
material. As a minimum, one must set up some sort of volume mesh and specify the
emissive and absorptive characteristics of the material at each mesh point. If a
multi-group treatment is necessary, this must be done for each radiation energy
group. A volume element of known volume must be associated with each mesh
point, and an algorithm must be provided to update the physical characteristics of
the medium in each element as it emits and absorbs radiation. Finally, one must
calculate what volume elements a beam passes through which was emitted by one
surface element in the direction of another surface element, and the proportion of
the total path length between the two surface elements which is traveled in each of
these volume elements.

Generation of a Volume Mesh

Generation of a volume mesh is accomplished with the RAYNA II code as
depicted in Fig. 2. First, the code finds a 2D outline or cross section of the problem
space. A 2D mesh is set up on this outline by stepping along the axis of symmetry
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F1G. 2. Generation of a velums mesh.

of the problem space in increments whose length depends on a user-defined resole-
tion factor. At each point along the axis, perpendicular rays are generated. Mesh
poiats are spaced along all segments of these rays that are found to be inside the
problem space. When the entire 2D mesh has been generated, each point is rotazed
about the axis of symmetry, defining new mesh points at appropriate intervals
during the rotation, resuiting in a 3D mesh. Each of the set of mesh points
generated in this way by one of the points in the 2D outline belongs to a single
identifiable volume ring whose axis is the same as the overall axis of symmetry
mentioned above. This circumstance will be used later in taking advantage of the
symmetry of the problem.

The volume assigned to a volume ring is simply a function of its width and the
radius of the inner and outer boundaries of the ring. Each volume element in the
ring is assigned an equal volume appropriate to the total number of elements in the
ring.

Treatment of Volwmetric Emission and Absorption

One must next address the problem of handling emission from and abscrption m
the various volume elements. In order to simplify this task. it is assumed that tne
probiem space is completely enclosed. An understanding of the advantages of using
completely enclosed geometries may be gained by considering an enclosure com-
posed of some chosen number of discrete surface elements, as shown in Fig. 3 {67

The incoming radiation at surface & is equal to the sum of the contributions from
all the other surfaces after allowing for absorption in the intervening medium, plus
the contribution due to emission from the gas. In the figure the radiation path
between &k and another surface j within the incident solid angle dw, is shown. If the
contributions from all of the other surfaces, including that from surface & if it 15
concave, are determined by following the paths between the surfaces; the sobid
angles swept out will encompass all of the gas or plasma that can radiate to surface
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F1G. 3. Gas filled enclosure with discrete surfaces. A typical path from area j to area & is shown.

k. Thus, if the contribution of gas emission at all points along the path between two
surface is taken into account for all surfaces, the gas emission for the entire volume
will be automatically accounted for. This obviates the necessity for complicated
schemes which attempt to handle volumetric emission and absorption as charac-
teristics of individual volume elements. Such schemes normally lead to serious
problems due to memory constraints. Instead, the fraction of radiation emission
originating in a volume element that should be contributed to each surface element,
as well as the amount of radiation in a bundle passing between two surface
elements that should be absorbed as it passes through a volume element in its path,
can be calculated in advance and assigned to an existing ray between two surface
elements.

To see how this is accomplished, let us first consider the question of emission
from the medium. The fraction of the total radiation emitted by each volume
element in the problem to each surface clement must be calculated. It is assumed
that the volume elements emit isotropically, although prescription of some angular
dependence is not out of the question, just as an angular dependence of some sort
might be postulated for the emissive and absorptive characteristics of the surface
elements. The contribution from volume element «' in the direction of surface
element k in a time step will be

Ea'k':Sa’ l/a'((Ak Cos 6)/’10'/(:) Ata (7)

where E ., is the radiant energy contribution in ergs from volume element @’ to sur-
face element k, S, is the source strength of volume element o’ in ergs/cm?-s, V,, is
the volume of element a’, A, is the area of surface element k, # is the angle between
the normal to the surface element and the line between the centroids of the volume
and surface elements, and r,, is the distance between the elements. Once the con-
tribution of a volume element to a surface element has been found, the contribution
is assigned to one of the many bundles of radiation passing between the given sur-
face element and all the other surface elements in the problem. These bundles are
the same ones we have described above in the context of vacuum problems. The



VIEW FACTOR METHOD 7

Vs

Surface
Element k

\ Contribution of volume slement a’ 1o
\surface element X
\

Fiwc. 4. Representative surface element to surface element rays. The radiative contribuiion frem

volume element «' to surface element & is assigned to a bundie on the nearest ray between elemenss ;
and k.

paths the bundles take between surface elements, which I will refer to as rays, are
generated as a by-product of view factor calculations which have been done earlier
by the code. All radiation in the problem, including that generated by the medium,
is assumed to rtravel along one of them. The appropriate volums and surface
clements and some of the rays are shown in Fig. 4.

At this point it may be pointed out that there is no need to store in memeory the
contribution of each volume element to each surface element. The 2D symmetry of
the problem space makes it possible to treat the contribution of volume elements
as a portion of the contribution of the volume ring to which they belong. Figure 3
itlustrates this point. Obviously, the contribution of radiation from volume ring 4’
to any clement on surface ring K will be identical as long as the elements are of
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Fig. 5. Contribution of a volume ring is equal to each of the elements of & surface ring.
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constant size. Furthermore, rotating the volume ring about the axis of symmetry
will not change this contribution, even though individual volume elements are
moved about because, thanks to the 2D symmetry of the problem, each volume
element in a ring radiates identically.

Further memory savings are realized by taking advantage of the symmetry of the
surface rings. Since the radiation received by each surface element in a ring from all
sources will be identical for every element in the ring, we need only consider one
element per ring as a receiving element. In short, one artificially converts the
intrinsically 3D view factor method to 2D for the sake of conserving memory.

Now let us once again consider the bundles of radiation passing along the rays
between surface elements. Each of these bundles can be identified unambiguously
by specifying the sending element, receiving ring, and the number of time steps that
light must travel to reach the location of the bundle. So far, however, we have not
considered how to let the code know which volume rings will contribute energy to
a bundle in a time step and how much they will contribute. At first glance, this
seems an almost insurmountable problem in terms of storage requirements.
Apparently, we must create an array large enough to contain an identifier for the
volume ring, sending element, receiveing ring. and time step. For a simple problem,
assuming reasonable resolution, one might have 200 volume rings, 250 sending
elements, 50 receiving rings, and 50 time steps between the two most distant surface
elements. Then one would need two or three arrays with (200 x 250 x 50 x 50) or
125 million words reserved for each. Such memory demands may not secem
unreasonable in a few years, but at present they are beyond the capabilities of most
machines.

Suppose we could assume, however, that the volume elements are sufficiently
large and the time steps sufficiently short that a bundle can only pass through
portions of three or four volume elements in a time step. One could compute in
advance which volume elements contributed to which bundles and use this informa-
tion to reduce memory requirements. This strategy is used in RAYNA 1II.

To illustrate the procedure, let us consider the encrgy emitted from volume
element ¢’ in the direction of surface element k. From Eq. (7) we know the actual
quantity of energy involved for a given volumetric rate of emission. Since this rate
may vary with time, a more appropriate quantity to store is the fraction of the total
energy emitted from a’ in a time step which is initially directed toward element k.
We know the equations of the rays from all the surface elements to element & and
the location of volume element ¢’. The energy contribution from g’ is assigned to
the closest ray to the volume element. The actual point on the ray where the energy
from a’ should start contributing is, of course, the nearest point on the ray to the
volume element. The approximate location of this point is stored in memory as
some number of time steps from the sending surface element, the distance light
travels in a time step being assumed constant. As mentioned earlier, we assume that
a bundle on any ray can only pass through portions of three or four (or some larger
number, memory allowing) volume elements in a time step. Space in memory is
reserved for these three or four contributions. If the contribution from 4’ is the first
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1o the bundle for the given time step, it is assigned to the first of these spaces, zrd
so on. If all the three or four spaces on the ray are taken, RAYNA II first checks
to see if memory is still available. If so, it generates a new ray through the volume
element ¢’ to surface element k. A “virtual sending element,” j, is declared at the
point along the ray from k in the direction of 4’ at which it intersects some other
point on the surface. This virtual surface element cannot emit radiation, and serves
only as a starting point for the ray. In this manner, it is possibie to achieve high
resolution at points of interest in the medium where the user might choose to refine
the volume mesh. If memory is exhausied, RAYNA [I checks a sei of 0 next-
rearest alternate points to assigne the radiation frem «'. If ait these are also found
1o be full, it declares the array space exhausted and stops the run.

Let us next turn to the task of dealing with volumetric absorption. Suppose we
have some physical mode] for determining absorption coefficients in the medium. in
addition io finding the identities of the volume elements through which a bundie
passes in a given time step, a problem we have already dealt with in sclving the
emission problem, one must find the path length of each bundie of radiation in
these elements. With this information, one can calculate the amount of energy
absorbed in each volume element per time step. We know the fixed distance light
travels in 2 time step, 4s, and the number of volume elements through which
bundle passes in a given time step. Some fraction of Js, then, must be assigned
as the path length in each of the elements. These fractional path lengths are
determined as follows.

Radiation can fravel from the emitting to the receiving clement along any ray
which intersects both elements at any point on their surfaces. Taken together, these
rays generate a volume or “sheaf” inside which all rays traveling between the
elements must remain. Assuming constant emission over the surface of the emitting
clement and that the surface elements are sufficiently small, radiation intensity from
the sending to the receiving clement within this sheaf is constant. The intersection

{ the sheaf volume with that of a volume element. then, should be preportional i
the time radiation, between the two surface elements, spends in the volume slemsnt
and, therefore, to the desired fractional path length. To facilitaie the calculations,
the sheaf volume is approximated by that of a cone with cross sections at the send-
ing and receiving elements equal in area to the projections of the surface clement
areas on the plane normal to the line connecting the surface elements. The mterses-
tion of the volume of this cone with that of the volume elements encountered in g
given time step is determined, and the sum of these guantities is normalized to one,
giving the fraction of the total path length spent in each of the volume elems

Energy aosorbed in a volume element, ', from a bundle, B, may then be
as

[T

al

En(a)y=Eg{l —exp{—a, F,{a'} 45)}, 8

where £, is the total energy in the bundle, a, is the absorption coefficient in & in
units of cm ™', and F,(a') is the fractional path length in element a' as calculated
above.
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At the moment, scattering effects are not included in the RAYNA II code.
However, isotropic scattering could be modeled easily as absorption followed
by instantaneous isotropic re-emission. Non-isotropic scattering would be more
difficult, but certainly not impossible to handle.

To get a better picture of how the algorithm works, suppose the surfaces defining
the problem have been broken down into surface elements and the intervening
medium has been divided into volume elements. Two arbitrary surface elements, i
and j, and the ray between them, are shown in Fig. 6.

The ray is divided into segments, with each segment representing the distance
traveled by radiation emitted by element / as it passes along the ray to element j
during each succeeding time step. The length of each segment except the last is, of
course, As, the distance light travels in a time step. At the beginning of each new
time step, one starts at the beginning of the segment, which we shall call segment
n, nearest to the receiving surface element, j. The amount of energy in the bundle
which arrived in segment # from segment » — 1 during the last time step is known,
as is the total emission in each of the rings, and the absorption coefficients therein.
Also known are various quantities which are a function of the geometry of a given
problem, such as the identities of the volume rings through which the bundle must
pass before it arrives at surface j, the fraction of the total emission from each of
those rings which the bundle is to receive during the time step, and the path length
of the ray through the rings. These “previously determined” quantities can be com-
puted once and for all at the start of a run or even stored in tables for geometries
run repeatedly and will only change if the problem boundaries are altered. With the
aid of the above information, we can determine what happens to the bundle at the
start of segment »n, which we will identify as bundle B, as it passes along the ray
to receiving surface j. Suppose volume ring 4’ is the first one encountered by the
bundle. The identity of the ring and the fraction, f;(A4', B), of the known total
energy, E,.{(A4’), which it emits during the present time step which should be
contributed to the bundle, have already been determined as described above.
The energy contributed by the ring to the bundle, then will be

En(4', B)=E(4') * [r(4', B). (9)

The energy E,.(A’. B) which should be absorbed in ring 4’ from the bundle can

n-2 -
n-3 i

Fi1G. 6. Typical ray between surface elements.
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be derived from the known number of elements in the ring and Eq. (8) above. As
bundle B passes through ring A', then, one sets the energy in the bundle £; to

Eg=Es+E (A", B)— E...(4", B). (10

abs
A similar procedure is followed for each of the other volume rings that the bundie
encounters on its path.

The procedure is altered somewhat to deal with optically thick regions. At the
beginning of each volume ring encountered, the path through the ring is broken
down into segments of not greater than one tenth of a mean free path in length. The
caiculation is then carried out as outlined above with the exception that absorption
from and emission into the bundle are updated at the end of each of these segments
instead of at the point where the bundle leaves the ring. In this way, errors due o
excessive self-absorption in a ring are avoided.

Having dealt with the bundle passing through segment », one next turns o the
bundie which must traverse segment # — 1 and update its energy content iz a
similar fashion as it passes along the ray to segment » This becomes the new
bundie energy at the start of segment # for the next time step. One iterates back-
wards along the ray in this fashion until one reaches surface element /. The energy
of the bundle as it leaves this element is computed based on the known surface
emissivities, reflectivities, and the amount of radiation received from all the other
clements during the last time step, as well as the view factor from surface element
i to clement j, and it is updated as it passes along the ray through segment ! just
as was done for the other bundles. This procedure is then followed for all the other
pairs of surface elements in the problem which are visible from each other. After
updating volumetric and surface radiative characteristics, one is then ready io
proceed to the next time step.

One can get some idea of the memory requirements of the method by considering
the problem of labeling cach of the volume rings which is to contribute t0 a given
bundie during a time step. First, of course, one must know which time step. Infor-
mation must be retained for the number of time steps it takes for 2 bundle to pass
zlong a ray oetween the two surface elements which are most distent from gach
other. We will assume 30 time steps is sufficient to resolve the time dependence o
the problem. Next, one must identify the sending surface element and the recewing
surface ring. Suppose the problem has been broken down into 300 surface elerments
arid 30 surface rings. Finally, one must know in what order the bundle is to encoun-
ter the volume rings as it passes along the ray. Let us say a maximum of four such
rings may be encountered by any bundle in a time step. We mus: then reserve
30 x 300 x 30 x4, or over one million words of memory to store the arrav. Two
more arrays of similar size are needed to store the path lengths of the sundle in
cach of the volume ring it encounters and the fraction of the total emission of the
ring which should be contributed to the bundle. These three arrays are the largest
needed by a considerable margin, and it has been found that problems of
reascnable complexity can be solved with a total available memory of arcund four

s
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million words. The sample problems described later in this paper required around
two million words.

Although the geometry used in RAYNA II is somewhat involved, the concept is
simple. One simply follows bundles or packets of radiation through materials and
between surfaces of known radiative characteristics. The physical transparency of
the code makes it possible to apply complex boundary conditions easily.

4. SAMPLE PROBLEMS

Assuming gray conditions, the radiative flux from a hemispherical body of gas to
an area at the center of its base is [ 7]

g=[1—exp(—aR)]e,, (11)

where « is the absorption coefficient of the gas in cm !, R is the radius of the
hemisphere, and e,, is the blackbody emissive power in ergs/cm?®-s. The simple form
of Eq.(11) for hemispheres has led to the definition of so-called “mean beam
lengths” for other geometries. These are approximate values of R which give correct
values of ¢ for a particular geometry. We will agree with the notation of Ref. [7]
in letting L, represent mean beam length. Approximations of L, for numerous
geometries are available in the literature. For a geometry with mean beam length
L,, then,

g=1[1—exp(—aL,}] ey. (12)

Since one more often deals with volumes of gas which are in thermal equilibrium
with some given absorption coefficient than with black media, we will use

430, = dae, dV di, (13)

TABLE I

Values of Mean Wall Flux for a Hemisphere to the Center of Its Base

Mean flux
Absolute coefficient
a(cm™!) Analytic Code
1.0E-5 2.50E1 2.64E1
1.0E-3 2.38FE1 248F1
S5.0E-3 1L.97E1 2.02E1
1.0E-2 1.58E1 1.57E1
5.0E-2 4.97F0 5.02F0
1.OE-1 2.50FE0 2.52FE0

Nore. Emissive power of medium equals 1erg/cm?-s. Flux in units of
erg/cm--s.
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where 4°Q, is the energy emitted by a volume element in equilibrium with its sur-
roundings. For a small volume in a gray medium of known absorption coeflicien:
and emissive characteristics, we can approximate e, then, as

e, = Q4. {14y

where { is volumetric emissive power in ergs/cm™-s.
In what foilows, the fixed value ¢ =1 is legisiated and the absorption coefficient
is varied. The approximate value of e, from Eq. (14) is used in Eg. {12} to find 4

Values of ¢ found in this way are compared with RAYNA Il results for wo
auierent geomenesmzwes#,naineiy,ine cases o! a hemusphencal bocy
of gas radiating to the center of its base and a circular cylinder of height squal o
its diameter radiating to an element at the center of its base. Beth geometries sie
showrn in Fig. 7.

The results for a hemisphere of gas radiating to a point at the center of its base
shown in Table 1 were obtained for a hemisphere of radius 100 cm. The base of the
hemisphere was composed of a ring of cuter radius 100 cmn and inner radius 1 om,
and a disk of radius 1 cm to serve as the “differential” area at the center of the base.
The hemisphere and ring were divided by the code into 50 and 60 elements. respec-
tively, and fhe volume was broken down into 52 rings with a total of 1072 volume
elements. There were 30 time steps between the two most distant surface elements
in the problem. All problems were run in single precisicn, with the excention of
few variables for which better accuracy proved indispensable.

In Table {I are shown the results for a cylinder of height equal to its diameter,
D, radiating to an element at the center of its base. In this case, four surface regions
were used: a cylinder, a large disk at the top, a large ring at the botiom. and a
small disk at the center of the bottom ring from which the results were obtained.
The cylinder, large disk, and large ring were divided into 60 surface ciements and
the smali disk was divided into four. The problem space was broken down inio 68

TABLE Ui

Values of Mean Wall Flux for a Circular Cylinder of Heignt Equal to Diameter, 2,
Radiating to an Element at the Center of lts Base

Mean flux

Absolute oefficient B

xemT ) Analytic Code
1LOE-S L92E1 (L, =077 195K
LOE-3 1.85E1 (L, =0.77D) 18551
5.0E-3 155F1 (L,=0.74D: 15581
L.OE-2 L27E1 (L,=071D} 12951
5.0£-2 486FK0 (L, =071D) 4.64F0
P 0£-2 250EC (L,=071D; 33%E0

Note. @ =1erg cm’s: flux in units of ergs,cm™-s.
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a. Hemisphere radiating b. Circular cylinder radiating
to its base to its base

O

c. Concentric spheres

FiG. 7. Geometries for sample problems.

volume rings with a total of 1155 volume elements. There were 35 time steps
between the two most distant surface elements in the problem. Mean beam length
for this geometry is given as 0.77D for optically thin gases, decreasing to 0.71D for
media of significant optical thickness. Mean beam lengths used in the code are
shown on the table.

The problem of concentric spheres, also shown in Fig. 6, is presented as a
demonstration of the method’s ability to handle time-dependent solutions. In par-
ticular, let us consider the case in which the surface of the central sphere begins
radiating at some constant strength at time r=0. One wishes to solve for the time-
dependent, radially outward directed flux at the surface of the outer sphere.
Analytic solutions to the vacuum problem are available in the literature [2] for the
case in which the central sphere has become so small it may be approximated as
a point source. To my knowledge, non exist for the case of a participating medium
with arbitrary absorption coefficient other than those presented in Table IIT and
Fig. 8 below. These results are for inner and outer sphere radii of 0.1 cm and
100 cm, respectively.
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The results are expressed in terms of r,, the light travel time across the outer
sphere, and §,, the effective radially outwardly directed source strength at the suz-
face of the outer sphere. Surface albedoes (reflectivities) were set at 0.5 in all cases.
In order to improve resolution, the step function source was initiated at the surface
of the outer sphere at time =0, rather than at the inner sphere, as in [2]. For the
case of an albedo of 0.5, then, the (inward directed} source sirength at the outer
surface was set to Sy/2, since only half of the incident radiation is reflected. The
quantity solved for is the outward directed flux at the outer boundary, F{r). Boih
spheres were broken down into 125 surface elements, and the region between them
was broken down into 49 volume rings with a total of 660 volume elements. Results
arg given for a considerable spread in absorption coefficients, demonstrating th
versatility of the method.

As can be seen from the tables, the code and analytic resuits were in good agree-
ment for all the problems described above, given the relatively crude subdivision of
problem surfaces and volumes. Little deterioration is evident in the performance of
the code for problems ranging from optically thick (x=1.F —~1cm "} to optically
thin (¢ =1.E£—5cm ™ !). Unfortunately, because of the recent development of this
method, quantitative techniques for estimating error are still unavailable. Howewer,

-

TABLE IIE

Radially Outward directed flux £{:) at the Surface of
the Outermost of Two Concentric Spheres

i x=1x10"Y¢cm™! i x=10x10""
Fry'S, F)L Se

ic Analytic Code 7.t Code
0.1665 1.014 1.014 BitL 1014
0.2667 1.036 1.031 L1778 1.030
0.3333 1.056 1.052 2232 1052
0.4000 1.081 1.078 2.667 1.077
G.5000 1.128 1.128 3.333 1127
0.6000 i.186 1.181 4.000 LIT9
0.6667 1.231 1.225 4.444 i.223
0.7333 1.281 1.277 4889 1.275
0.8333 1.368 1.360 3.558 1.256
0.9000 1.433 1.427 6.000 1421
1.0000 1.543 1.532 6.667 1.525
10667 1.556 1.543 7t 1.535
[.1667 1.579 1.563 7.778 1.558
1.2333 £.597 1.582 8.222 1.574

Nore. Space between the spheres is filled with medium of absorption coefficient «. Step function
source directed outward with strength S, erg/cm?-s at the surface of the ouvter sphere turns on at time
r=0. Times in terms of 1,. the light travel time across the outer spher2
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TABLE III—Continued

iii. a=10x10"3 iv. a=25x10"3 v. a=50x10"?
F(1):S, F(1)/'Sy F(1)/S,
tt, Code tr, Code tt, Code
1111 1.014 1111 1.013 1.111 1.012
1.778 1.029 1.778 1.028 1.778 1.025
2222 1.050 2222 1.047 2222 1.041
2.667 1.074 2.667 1.068 2.667 1.059
3.333 1.119 3.333 1.108 3.333 1.091
4.000 1.167 4,000 [.148 4.000 1.121
4.444 1.205 4.444 1.180 4.444 1.144
4.889 1.251 4.889 1.217 4.889 1.170
5.556 1.322 5.556 1.273 5.556 1.208
6.000 1.378 6.000 1.316 6.000 1.236
6.667 1.465 6.667 1.381 6.667 1.277
7.111 1.474 7.111 1.388 7111 1.281
7.778 1.492 7.778 1.401 7.778 1.288
8.222 1.505 8.222 1.410 8.222 1.294
vii a=75x10"? vil. x=10x10"7 vili. a=25%x10""
F(£)/S, F(1);S, F(t)S,
tit. Code t't, Code e, Code
Litt 1.011 1111 1.011 1111 1.007
1.778 1.023 1.778 1.021 1.778 1.012
2222 1.037 2222 1.033 2222 1.017
2,667 1.052 2.667 1.045 2.667 1.021
3.333 1.077 3.333 1.065 3.333 1.026
4.000 1.100 4.000 1.083 4.000 1.029
4444 1.117 4444 1.095 4444 1.031
4.889 1.135 4.889 1.108 4.889 1.033
5.556 1.161 5.556 1.125 5.556 1.034
6.000 1.179 6.000 1.137 6.000 1.035
6.667 1.204 6.667 1.153 6.667 1.036
7.111 1.206 7111 1.154 7.111 1.036
7.778 1.211 7.778 1.157 7.778 1.036
8.222 1.214 8.222 1.158 8.222 1.036

when one considers the relatively small number of elements into which the surface
and volume space of the problem were divided, the limited resolution in time, and
the fact that the approximations used to find the surface to surface view factors can
be improved upon with little difficulty, it can be concluded that agreement of the
code results with analytic solutions was excellent.

The particular sample problems treated here were chosen mainly because similar
problems are encountered relatively frequently in the literature. not because the
code is limited to such simple geometries. As already noted, the code can solve
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Fig. 8  Outward directed flux at surface of outer sphere for concentric sphere problems.

problems involving arbitrarily varying surface and volume radiative characrerisiics
and source functions.

It is interesting fo note that, for the first two geometries given in this paper. the
walls did not participate at all except as a radiation sink. This demonstrates the fact
that, since the geometric surfaces employed to specify a particular problem need not
re-emit radiation. thev can play a role similar to that of non-reentrant boundary
conditions in diffusion, P,, §,, and other radiation transport codes. it is gven
possible to speculate on the feasibility of “virtual” surfaces, which would neither
absorb nor emit radiation and would merely play the role of improving resolutior
at some point or other in the medium where interesting physics is taking place.
Thus, it is quite conceivable that view factor codes may be appiied 1o radiation
transport problems involving no real surfaces at ali. Furthermore, the code’s ability
to automatically generate new rays through portions of the volume which the user
has artificially refined for better resolution means that the subdivision of the encios-
; ¢ di ; ik avaes i s within the

five minutes for convergence to be achieved on ar IBM 3021 computer. This did
not include the breakdown of the problem into elements, computation of view
factors, and other repetitive tasks which can be dene crice and stored on disk for
2 given geometry.

5. CONCLUSIONS

The view factor technique described above is a new method of solving non-linear,
time-dependent radiative transfer problems for two-dimensional geometriss
including participating media. The principles applied in the code can be extended
without difficulty to three-dimensional problems, assuming the existence of sufficient
computer memory resources. The code can be used to solve fully time-dependent
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problems in cases where radiation is the dominant mode of energy transfer. It can
also be used as an iterative method to provide time-independent solutions to the
radiative transfer problem in cases where dominant physical phenomena are occur-
ring on time scales significantly longer than that required for the radiation field to
arrive at steady-state or near steady-state conditions. It is felt that the speed and
geometric adaptability of codes employing the method will make them very com-
petitive with alternative techniques, such as Monte Carlo, in handling radiative
transfer problems with participating media. They are well suited to solution with
machines employing parallel architecture, and ongoing improvements in computer
memory capacities will enhance their capabilities in the near future, making the
treatment of three-dimensional geometries the next logical step.
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